holomorphically injective - definição. O que é holomorphically injective. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é holomorphically injective - definição

MODULE SUCH THAT INFINITE SYSTEMS OF LINEAR EQUATIONS CAN BE SOLVED BY SOLVING FINITE SUBSYSTEMS
Algebraically compact; Pure injective module; Pure-injective; Pure-injective module

Injective hull         
NOTION IN ABSTRACT ALGEBRA
Module of finite rank; Injective envelope
In mathematics, particularly in algebra, the injective hull (or injective envelope) of a module is both the smallest injective module containing it and the largest essential extension of it. Injective hulls were first described in .
Injective module         
MATHEMATICAL OBJECT IN ABSTRACT ALGEBRA
Injective test lemma; Injective dimension; Baer's criterion; Self-injective ring
In mathematics, especially in the area of abstract algebra known as module theory, an injective module is a module Q that shares certain desirable properties with the Z-module Q of all rational numbers. Specifically, if Q is a submodule of some other module, then it is already a direct summand of that module; also, given a submodule of a module Y, then any module homomorphism from this submodule to Q can be extended to a homomorphism from all of Y to Q.
Holomorphic separability         
COMPLEX MANIFOLD SUCH THAT, FOR ANY TWO DISTINCT POINTS, THERE EXISTS A GLOBALLY DEFINED FUNCTION THAT TAKES DIFFERENT VALUES ON THE TWO POINTS
Holomorphically separable
In mathematics in complex analysis, the concept of holomorphic separability is a measure of the richness of the set of holomorphic functions on a complex manifold or complex-analytic space.

Wikipédia

Algebraically compact module

In mathematics, algebraically compact modules, also called pure-injective modules, are modules that have a certain "nice" property which allows the solution of infinite systems of equations in the module by finitary means. The solutions to these systems allow the extension of certain kinds of module homomorphisms. These algebraically compact modules are analogous to injective modules, where one can extend all module homomorphisms. All injective modules are algebraically compact, and the analogy between the two is made quite precise by a category embedding.